Distorted Sex Ratios: A Window into RNAi-Mediated Silencing
نویسندگان
چکیده
I n 1925, Gershenson started laboratory cultures from 19 female Drosophila obscura that were collected from a forest near Moscow. After recounting his difficulties raising the flies (partial success achieved with a diet of potatoes and fermented raisins), he noted that progeny from most cultures contained an approximately equal sex ratio [1]. Several cultures, however, yielded progeny with highly skewed ratios, such as one group with 87 females and only 7 males. These " deviations from the normal sex-ratio were so considerable that it seemed impossible to explain them by accidental causes, " he wrote. Similar observations had been made by others, but Gershenson went on to perform a number of experiments and reached three important conclusions. First, sex-ratio distortion (referred to hereafter as sex-ratio) was associated with the X chromosome. Second, the expression of the phenotype was sex-limited, because it only occurred in the progeny of males carrying the causal X chromosome. And third, the low numbers of males did not appear to be caused by preferential death of male zygotes or their transformation into females. Rather, he concluded that " the greater part of the spermatozoa determining the development of males do not participate in fertilization ". Because females have two X chromosomes and males are XY, he further suggested that either Y-bearing sperm are less frequently produced by affected males than X-bearing sperm, or that Y-bearing sperm are less capable of achieving fertilization. Numerous additional examples of sex-ratio have since been reported in other Drosophila species, but the identity of the causal genes has remained elusive. In this issue of PLoS Biology, Yun Tao and colleagues report the discovery and identity of an X-linked sex-ratio distorter from Drosophila simulans called Dox (Distorter on the X) [2]. In a second paper [3] they describe the identification of a dominant suppressor of Dox called Nmy (Not much yang). The close association of distorting and suppressing genes, though not appreciated by Gershenson, is key to understanding the genetic basis and evolutionary dynamics of sex-ratio systems. The long-term prospects of sexually reproducing populations that contain predominantly one sex are dire, and theory (commonly attributed to R.A. Fisher, but see [4] for an alternative attribution) suggests that an equal sex ratio is generally the most stable ratio over evolutionary time. Genes causing sex-ratio are therefore selfish genes, good at promoting an increase in their own frequency while potentially driving their host species …
منابع مشابه
Small interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملGenome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum
Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced e...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملThe Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology
have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007